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Methylaspartase catalyses the slow syn-elimination of ammonia from the (2S,3R)-[~-erythro]-diastereoisomer of the 
natural substrate (2S,3S)-3-methylaspartic acid, to give mesaconic acid; the reaction does not involve C-3 epimerisation 
followed by normal anti-elimination, ruling-out the possibility of a carbanion intermediate, but, displays large primary 
deuterium isotope effects consistent with concerted C-H and C-N bond cleavage. 

Methylaspartase catalyses the second step in the catabolism of 
(2s)-glutamic acid in Clostridia and several other bacteria, the 
anti-elimination of ammonia from (2S,3S)-3-methylaspartic 
acid 1 to give mesaconic acid 2. Early reports by Barker 
claimed that methylaspartase could also catalyse the syn- 
deamination of the L-erythro-isomer, (2S,3R)-3-methylaspar- 
tic acid 3, at ca. 1% of the rate for the natural substrate, to give 
mesaconic acid.1 Based on this and other observations, 
including the finding that C-3 solvent hydrogen exchange into 
(22,3S)-3-rnethylaspartic acid 1 occurred at a rate faster than 
the natural deamination reaction, Bright suggested that each 
of the deamination reactions might proceed via a C-3 
carbanion intermediate.2 However, it was later shown that the 
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natural substrate 1 displayed signiticant primary deuterium 
isotope effects for both the deamination3 and the C-3 
hydrogen-exchange reaction .4 The existence of a carbanion 
was finally discounted when subsequent work, using double 
15N/14N--WPH-isotope fractionation measurements, showed 
that the elimination reaction was concerted5 and was followed 
by a slow step (step 3), which could account for the apparent 
rapidity of C-3 hydrogen exchange, Scheme 1.4.6 

In the absence of a carbanion intermediate derived from the 
L-threo-substrate 1, it was difficult to understand why methyl- 
aspartase should process the L-erythro-diastereoisomer. 
(2S,3R)-3-Methylaspartic acid, however, had been identified 
as an intermediate in the biosynthesis of (2s)-glutamate in 
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Acetobacter suboxyduns implying the existence of a distinct 
L-erythro-specific methylaspartase a~ t iv i ty .~  As contamination 
with an L-erythro-specific enzyme might account for Barker's 
original observations' we set out to identify such an enzyme 
and investigate the mechanism of the reaction. 

~-threo-3-Methylaspartase was isolated and purified to 
homogeneity (as judged by SDS-PAGE) from Clostridium 
tetunomorphum H18 using modifications of Barker's original 
procedures .1 Incubation of the enzyme with diammonium 
mesaconate at pH9.0 in the presence of K+ and Mg2+ ions 
gave initially ~-threo-3-methylaspartic acid, and, after exten- 
ded incubation times, ~-erythro-3-methylaspartic acid, as 
judged by 1H NMR spectroscopic examination of the incuba- 
tion solution. Thus, methylaspartase did possess an L-erythru- 
3-methylaspartase or a C-3 ~-erythro-threo-3-methylaspartic 
acid epimerase activity.8 To exclude the possibility of contami- 
nation with other active proteins, the ~-threo-3-methylaspar- 
tase gene was cloned and over-expressed in Escherichia coli 
and the experiment described above was repeated using the 
pure recombinant enzyme .6 The results were identical indicat- 
ing that ~-erythro-3-methylaspartase (or epimerase) activity 
was an inherent property of ~-threo-3-methylaspartase. 

In order to distinguish between epimerase and ~-erythro-3- 
methylaspartase activities, access to stereochemically pure 
(2S,3R)-3-methylaspartic acid and (2S,3R)[3-2H]-3-methyl- 
aspartic acid was required. Accordingly, the C-6 alkylation of 
commercially available (3R)-2,5-dimethoxy-3-isopropyl-3,6- 
dihydropyrazine with methyl (2R)-2-bromopropanoic acid 
[derived from (2R)-alanine in two steps] was assessed. The 
reaction was successful and the subsequent deprotections 
occurred smoothly9 but the chemical yields and the chiral 
integrity at C-3 were too low to be of utility in the planned 
investigations. t Accordingly, the unlabelled and deuteriated 
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Scheme 2 Reagents and conditions: i, NH4C1 (0.2 mol dm-3), MgC12 
(20mmoldm-3), KCl (10mmoldm-3) in H20, pH9.0 or D20,  
pD 8.6, methylaspartase (500 units for 5 g of mesaconic acid), 30 "C, 
several days required to reach equilibrium, 86% ; ii, N-(benzyloxycar- 
bony1oxy)-succinimide, K$03 (as), 99% ; iii, CH2N2, Et20,98% ; iv, 
column chromatography on flash silica, eluting with Et,O-light 
petroleum (1 : l ) ,  N-Z-(2S,3R)-3-methyl aspartate dimethyl ester is 
obtained in quantitative recovery, after recycling, and elutes first; v, 
AcOH-HCI (1 : l), reflux, 55%, Z = benzyloxycarbonyl 

~-erythro-3-methylaspartic acids were obtained by resolving 
the (2S,3RS)-N-benzyloxycarbonyl-3-methylaspartic acid 
dimethyl esters (4 and 5 HA = H or 2H) derived from 
enzymically prepared (2S,3RS)-3-methylaspartic acid as 
shown in Scheme 2. 

The (2S,3R)-3-methylaspartic acids (3, HA = H) and (3, HA 
= 2H) showed the expected spectral and analytical data and 
contained less than 2% of the (2S,3S)-diastereoisomer. j 

To distinguish between epimerase and ~-erythro-3-methyl- 
aspartase activities, (2S,3R)-3-methylaspartic acid (3, HA = 
H) was incubated with the enzyme in deuterium oxide in the 
presence of K+ and Mg2+ ions and the reaction was monitored 
by 200 MHz 1H NMR spectroscopy. The deamination reaction 
proceeded smoothly to give mesaconic acid and then, much 
later, (2S,3S)[3-2H]-3-methylaspartic acid. No solvent 
hydrogen incorporation into C-3 of the substrate (2S,3R)-3- 
methylaspartic acid was detected over the course of the 
reaction (24 h). The estimated limit of detection by 200 MHz 
1H NMR spectroscopy is -2% of deuterium incorporation. 
Moreover, it was evident that the L-threo-isomer was not 
formed via direct epimerisation at C-3 since its formation 
depended on the amination of mesaconic acid generated 
during the initial phase of the reaction. Hence, methylaspar- 
tase is able to catalyse, directly, the syn-elimination of 
ammonia from the L-erythru-substrate. 

Examination of the kinetic properties of the L-erythro- 
substrate 3 in the presence of 1 mmoldm-3 K+ and 
20 mmol dm-3 Mg2+ at pH 9.0 revealed that V,,, was 17.2 x 
10-6mol dm-3 min-1 (kcat 12.9 s-l), 38 times slower, and K ,  
was 40 mmol dm-3, 17 times larger, than the corresponding 
parameters for the L-threo-diastereoisomer.? As with the 
L-threo-substrate, increasing the K+ concentration from 1 to 
50 mmol dm-3 increased the apparent value of Vma, and also 
decreased the apparent value of Km. For the L-erythro- 
substrate, these factors were 2.4 and 7.6, respectively. 

Our earlier work on the mechanism of elimination of 
ammonia from the L-threo-substrate had indicated that the 
reaction involved three chemical steps: (i) fast reversible 
conversion of the Michaelis complex to a covalent substrate- 
enzyme complex; (ii) partially rate-limiting, concerted CP-H 
and Cw-N bond cleavage; and (iii) partially rate-limiting 
regeneration of the electrophilic prosthetic group, the puta- 
tive dehydroalanine residue, Scheme 1. The kinetics for the 
L-erythro-substrate were expected to differ only in the rates for 
the first two steps since step 3, regeneration of the electro- 
philic prosthetic group, should be identical .4 

In order to determine which step(s) was slowed by the 
difference in stereochemistry at C-3, the kinetic parameters 
were reexamined using the deuteriated substrate (3, H A  = 2H) 
and the isotope effects on V,,, and VIK were calculated. At 
lmmoldm-3 K+,  DV [or VH/VD] was 7.15 k 2.74 clearly 
indicating that C-H bond cleavage is the rate-determining step 
in the reaction. The value of D(VIK) [or (VHIVD)I(KHIKD)] 
was somewhat smaller, 3.39 _+ 1.6, indicating that a reverse 
step(s) preceding the isotopically sensitive transition state in 
the reaction coordinate is slow and exerts a forward reaction 
commitment. As substrate debinding is fast for the L-threo- 
isomer4 and is likely to be fast for the L-erythro-isomer, the 
most probable cause for the depressed value of D ( V / K )  is the 

i- This rather cumbersome route provided (2S,3R)- and (2S73S)-3- 
methylaspartic acid in a ratio of 95:5. This material was used in 
preliminary experiments, which indicated that it was too impure for 
kinetic studies. The ratio of the specificity constants (kCatlK,) for 
(2S73R)- and (2S,3S)-3-methylaspartic acid at pH 9.0 is 1 : 650 at 
1 mmol dm-3 K' and at 1 : 400 at 50 mmol dm-3 K+ (see text), which 
explains why a very high diastereoisomeric excess was required. Small 
levels of contamination with the (2S,3S)-isomer (<2%) can be 
tolerated as the (2S,3S)-isomer is consumed rapidly, in a burst, before 
the steady-state rate is established. This behaviour is a consequence of 
the fact that the substrate binds to the enzyme in rapid equilibrium4 
and is processed much more quickly than the unnatural isomer. 

$ All compounds and intermediates gave the expected spectral and 
analytical data. For (2S73R)-3-methylaspartic acid; m.p. 257-259 "C 
(decomp.); [a]:: +36.3" (c 1.0,5 mol dm-3 HCl), litloa +38.7" (c 1.83, 
5moldm-3 HCl), litlob i-32.9" (c 0.8, 5 moldm-3 HCl); 6 H  
(200 MHz; 2H20) 1.20 (3H, d, J 7.5 Hz, 3-CH3), 2.76 (lH, m, J 7.5 
and 5.0 Hz, 3-H) and 3.50 (lH, d,  15.0 Hz, 2-H). For (2S,3R)[3-2H]- 
3-methylaspartic acid; m.p. 258-259 "C (decomp.); [a]: +30.5" 
(c 1.0, 5 mol dm-3 HC1); 6 H  (200 MHz; *HZO) 1.20 (3H, S,  3-CH3), 
and 3.50 ( lH ,  s, 2-H).9 The (2S,3S)-diastereoisomer can be easily 
distinguished from the (2s ,3R)-diastereoisomer in 1H NMR spectra 
by examining the chemical shifts for the signals due to the methyl 
groups which occur at 6 1.05 and 1.20, respectively. 
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slow break-down of the covalent L-erythro-substrate-enzyme 
complex to give the Michaelis complex, the reverse of step 1 
(compare with Scheme 1). 

At 50 mmol dm-3 K+, DV was 6.79 k 0.92 and D(V1K) was 
4.10 k 1.30, although the absolute apparent values of V,,, 
and K,  were increased and decreased, respectively. These 
findings (faster rates, lower K,  values, similar magnitudes of 
isotope effects to those obtained at 1 mmol dm-3 K+) are in 
accord with the notion that the reverse of step 1, rather than 
substrate debinding, accounts for the depressed value of 
D(V/K) compared with DV. Note that at 50 mmol dm-3 K+,  
the isotope effects for the threo-isomer were completely 
s~ppres sed .~  

Collectively the results presented here show that methyl- 
aspartase possesses an intrinsic ability to slowly deaminate the 
L-erythro-diastereoisomer of its natural substrate; that this 
ability is not associated with an epimerase activity, and that a 
C-3 carbanion is not an intermediate. The reaction shows a 
very large primary deuterium isotope effect for V,,, and a 
smaller, but significant effect on VIK under conditions where 
the rate and the apparent binding constants vary widely. Thus, 
C-H bond cleavage is cleanly rate-limiting and is preceded by 
a step that is slow in the reverse direction, which is not 
substrate debinding. Given that the facile formation of a 
Cm-carbonium ion carboxylic acid intermediate seems un- 
likely, the results suggest that the syn-elimination reaction is 
concerted. 
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